Edición de «Crispr-Cas9»
De Bioeticawiki
Advertencia: no has iniciado sesión. Tu dirección IP se hará pública si haces cualquier edición. Si inicias sesión o creas una cuenta, tus ediciones se atribuirán a tu nombre de usuario, además de otros beneficios.
Puedes deshacer la edición. Antes de deshacer la edición, comprueba la siguiente comparación para verificar que realmente es lo que quieres hacer, y entonces publica los cambios para así efectuar la reversión.
Revisión actual | Tu texto | ||
Línea 6: | Línea 6: | ||
* NHEJ (unión de extremos no homólogos) que produce la disrupción génica (INDEL, inserciones y/o deleciones). | * NHEJ (unión de extremos no homólogos) que produce la disrupción génica (INDEL, inserciones y/o deleciones). | ||
* HDR (reparación dirigida por homología) que da lugar a la reparación génica y a la edición. | * HDR (reparación dirigida por homología) que da lugar a la reparación génica y a la edición. | ||
El sistema CRISPR-Cas9 consta de dos elementos: una pequeña molécula de ARN (la parte CRISPR) que contiene una secuencia complementaria con la secuencia diana contra la que se dirige en el ADN, y una endonucleasa (denominada Cas9) que es una proteína con actividad enzimática capaz de cortar el ADN y hacerlo solamente donde le indique la pequeña molécula de ARN antes mencionada. Al producir la doble rotura en la molécula de ADN entran en acción otras enzimas existentes en las células que reparan el daño producido, pero que pueden generar errores al insertar o eliminar algunos nucleótidos en el lugar del corte; es decir, se '''genera una mutación en el gen afectado por el corte''' (NHEJ). Sin embargo, si se añade un tercer elemento al sistema CRISPR-Cas9 consistente en una molécula de ADN que tenga secuencias complementarias a la zona donde se producirá el corte y, además, se incorporan en esta secuencia algunos cambios específicos que no estuvieran en el genoma original, el sistema tenderá a utilizar esta molécula de ADN como molde para restaurar el corte cambiando así el | El sistema CRISPR-Cas9 consta de dos elementos: una pequeña molécula de ARN (la parte CRISPR) que contiene una secuencia complementaria con la secuencia diana contra la que se dirige en el ADN, y una endonucleasa (denominada Cas9) que es una proteína con actividad enzimática capaz de cortar el ADN y hacerlo solamente donde le indique la pequeña molécula de ARN antes mencionada. Al producir la doble rotura en la molécula de ADN entran en acción otras enzimas existentes en las células que reparan el daño producido, pero que pueden generar errores al insertar o eliminar algunos nucleótidos en el lugar del corte; es decir, se '''genera una mutación en el gen afectado por el corte''' (NHEJ). Sin embargo, si se añade un tercer elemento al sistema CRISPR-Cas9 consistente en una molécula de ADN que tenga secuencias complementarias a la zona donde se producirá el corte y, además, se incorporan en esta secuencia algunos cambios específicos que no estuvieran en el genoma original, el sistema tenderá a utilizar esta molécula de ADN como molde para restaurar el corte cambiando así el genoma; es decir, editándolo (edición genómica)<ref>Montoliu, L. (2015). Las herramientas CRISPR: Un regalo inesperado de las bacterias que ha revolucionado la biotecnología animal. Recuperado de http://www.comunicabiotec.org</ref>. | ||
Como si de un procesador de textos se tratara, el sistema CRISPR-Cas9 y la molécula de ADN '''consiguen localizar un error y corregirlo''' en un gen o, viceversa, instaurar un error donde antes no lo había, reproduciendo así en un modelo animal experimental aquella mutación detectada en un paciente afectado por una [[enfermedad]]. En otras palabras, es posible reproducir en el genoma de los animales de experimentación las mismas mutaciones observadas en los pacientes. | Como si de un procesador de textos se tratara, el sistema CRISPR-Cas9 y la molécula de ADN '''consiguen localizar un error y corregirlo''' en un gen o, viceversa, instaurar un error donde antes no lo había, reproduciendo así en un modelo animal experimental aquella mutación detectada en un paciente afectado por una [[enfermedad]]. En otras palabras, es posible reproducir en el genoma de los animales de experimentación las mismas mutaciones observadas en los pacientes. | ||
Línea 31: | Línea 31: | ||
Varios de los científicos principales actores de la historia de CRISPR hicieron sus trabajos seminales al principio de sus carreras científicas (por ejemplo, Mojica, Horvath, Marrafini, Charpentier, Zhang), algunos de ellos con edades inferiores a los 30 años. | Varios de los científicos principales actores de la historia de CRISPR hicieron sus trabajos seminales al principio de sus carreras científicas (por ejemplo, Mojica, Horvath, Marrafini, Charpentier, Zhang), algunos de ellos con edades inferiores a los 30 años. | ||
Algunos de los pioneros de CRISPR no trabajaban en centros de investigación dentro de los “circuitos” científicos de renombre internacional (por ejemplo, la Universidad de Alicante, el Ministerio de Defensa de Francia, los laboratorios de la empresa Danisco en Dinamarca, la Universidad de Vilnius en Lituania) y sus ''' | Algunos de los pioneros de CRISPR no trabajaban en centros de investigación dentro de los “circuitos” científicos de renombre internacional (por ejemplo, la Universidad de Alicante, el Ministerio de Defensa de Francia, los laboratorios de la empresa Danisco en Dinamarca, la Universidad de Vilnius en Lituania) y sus t'''rabajos originales fueron rechazados''' para su publicación en revistas del mayor prestigio (Nature, Proceedings of the National Academy of Sciences, Molecular Microbiology, Nucleic Acid Research, Journal of Bacteriology, etc.). | ||
Los grandes descubrimientos científicos no se corresponden normalmente con un “eureka” instantáneo, sino que se van elaborando durante muchos años. | Los grandes descubrimientos científicos no se corresponden normalmente con un “eureka” instantáneo, sino que se van elaborando durante muchos años. | ||
Línea 37: | Línea 37: | ||
== En la actualidad == | == En la actualidad == | ||
El sistema de '''edición genética''' '''CRISPR-Cas9''' causa más daño en el ADN celular de lo que hasta ahora se creía, y éste no es detectado por las pruebas estándar, según revela un estudio publicado en Nature Biotechnology<ref>{{Cita web|url=https://www.nature.com/search?q=crispr-Cas9|título=crispr-Cas9}}</ref>. | El sistema de '''edición genética''' '''CRISPR-Cas9''' causa más daño en el ADN celular de lo que hasta ahora se creía, y éste no es detectado por las pruebas estándar, según revela un estudio publicado en Nature Biotechnology<ref>{{Cita web|url=https://www.nature.com/search?q=crispr-Cas9|título=crispr-Cas9}}</ref>. | ||
[[Archivo:Analysis.jpg|miniaturadeimagen| | [[Archivo:Analysis.jpg|miniaturadeimagen|El uso de '''CRISPR''' avanza inexorablemente, y sus aplicaciones médicas se multiplican. No obstante, todavía quedan aspectos técnicos por pulir, como la dificultad de introducir transgenes en las células que no se dividen, que componen la mayoría de los órganos adultos, como el corazón, el cerebro, el páncreas o los ojos.<ref name=":1">{{Cita publicación|url=https://www.observatoriobioetica.org/2016/11/crispr-en-humanos/17011|título=Se utiliza CRISPR por primera vez en humanos|apellidos=Observatorio de Bioética UCV|nombre=|fecha=17 de noviembre de 2016|publicación=Observatorio de Bioética|fechaacceso=15 de octubre de 2020|doi=|pmid=}}</ref>]] | ||
Si bien ya se sabía que CRISPR-Cas9 puede producir '''efectos off-target''', es decir, fuera de la secuencia deseada del genoma, este estudio revela que también aunque el sistema '''actúe on-target''', es decir, en el sitio esperado, se producen mutaciones no deseadas cuya entidad es considerable, teniendo lugar grandes deleciones (eliminación de ADN) y complejos reordenamientos, lo que puede comprometer gravemente la función genética. Además, muchas de las mutaciones producidas no pueden ser detectadas mediante los métodos de genotipado estándar. | Si bien ya se sabía que CRISPR-Cas9 puede producir '''efectos off-target''', es decir, fuera de la secuencia deseada del genoma, este estudio revela que también aunque el sistema '''actúe on-target''', es decir, en el sitio esperado, se producen mutaciones no deseadas cuya entidad es considerable, teniendo lugar grandes deleciones (eliminación de ADN) y complejos reordenamientos, lo que puede comprometer gravemente la función genética. Además, muchas de las mutaciones producidas no pueden ser detectadas mediante los métodos de genotipado estándar. | ||
Línea 43: | Línea 43: | ||
En opinión del Observatorio, investigaciones adicionales en modelos animales y de células humanas deberán esclarecer si hay más riesgos que aún se desconocen y cómo puede afinarse esta herramienta para que su uso sea eficaz y seguro. Ante estos riesgos, los ensayos clínicos deben replantearse, y definir con suma precaución los criterios de elegibilidad. Así mismo, alternativas como '''la edición de base,''' la '''edición de ARN''' o la modulación de la '''actividad genética''' mediante CRISPR deben potenciarse, pues podrían resultar más seguras. | En opinión del Observatorio, investigaciones adicionales en modelos animales y de células humanas deberán esclarecer si hay más riesgos que aún se desconocen y cómo puede afinarse esta herramienta para que su uso sea eficaz y seguro. Ante estos riesgos, los ensayos clínicos deben replantearse, y definir con suma precaución los criterios de elegibilidad. Así mismo, alternativas como '''la edición de base,''' la '''edición de ARN''' o la modulación de la '''actividad genética''' mediante CRISPR deben potenciarse, pues podrían resultar más seguras. | ||
== Otras voces == | == Otras voces == |